Using Clay Microporosity to Improve Formation Evaluation in Potential ROZs: Cypress Sandstone, Illinois Basin

Leo G. Giannetta, Nathan D. Webb, Shane K. Butler, and Nathan P. Grigsby

Illinois State Geological Survey
University of Illinois Urbana-Champaign
Agenda

• Background
 • Cypress Sandstone, clay microporosity

• Methods
 • Imaging techniques

• Results
 • Clay types, microporosity

• Applications
 • Clay volume, water saturation, porosity

• Conclusions
A. Generalized facies map of the Cypress Sandstone across the Illinois Basin
B. Generalized cross section of the lower Chesterian Series

Modified from Nelson et al., 2002
Thick Cypress and Possible ROZs

- Residual Oil Zones are targets for CO2-EOR and storage

A. Generalized column of the Chesterian series containing the Cypress

B. Typical log response of the thick Cypress
Clay Microporosity

- Pore aperture radii < 5 microns (Pittman, 1979)
- Fluid saturated; immobile during hydrocarbon emplacement and production

The “clay effect”:

- Extra conductivity
- Low resistivity
- High Water Saturation
Sample Selection

- 20 sample depths, 12 wells.
- Large vertical and lateral distribution
- All from IVF
Petrographic Analysis Using SEM

- Clay texture identified with petrography ➔ analyzed with SEM
- Epoxy impregnated, polished, carbon coated, mounted with carbon tape and silver paint
SEM Techniques

Secondary Electron (SE)
Information on morphology, topography

Backscattered Electron (BSE)
Useful for determining phases (mineral, epoxy)

EDS provides elemental composition

Al, Si, O peaks

Kaolinite: $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$

• Images of pore-filling kaolinite booklets
Quantifying Clay Micrporosity (ϕ_m)

- BSE mage analysis. Silicates appear light, epoxy appears dark (based on Z)
- Delete grey tones until only mineral surfaces remain
- % grey tones deleted = % microporosity (Hurst & Nadeau, 1991)

Before grey tone deletion

After grey tone deletion
Kaolinite

- Most abundant clay mineral in the Cypress (by weight %)
- Pore-filling, 3 morphologies, $X\phi_m = 41\%$

Booklets. BSE Images **Blocks.** SE Images **Vermicules.** SE & BSE Images
Chlorite

- 2nd most abundant clay mineral
- Grain coating and pore-filling, 2 morphologies, $\bar{X} \varnothing_m = 58$

Rosettes. BSE Images
Clusters. SE Images
Illite

- 3rd most abundant clay mineral
- Pore lining and pore-filling, 2 morphologies, $\bar{X} \varnothing_m = 63%$

Hairy (fibrous). BSE Images

Needles. BSE Images
Mixed-Layer Illite-Smectite

- Least abundant clay mineral
- Pore filling, I morphology, $\overline{X}\varphi_m = 65\%$. Confirmed by XRD, EDS, morphology
Clay Microporosity Distribution by Morphology
Applications
Effective Clay Mineral Volume

- Dry clay volume estimated by weight % from XRD, but does not include micropores
- Effective clay mineral volume \Rightarrow dry clay + microporosity

Effective clay mineral volume (V_e)

\[V_e = \frac{V_m}{(1 - \bar{x}\bar{\Phi}_m)} \]

$\bar{x}\bar{\Phi}_m$ = clay mineral microporosity
V_m = volume of solid clay mineral

Example:

$V_m_{kaol} = 1.65$% bulk mineral fraction
$\bar{x}\bar{\Phi}_m_{kaol} = 41$%

\[V_{e_{kaol}} = \frac{1.65}{(1 - 0.41)} = 2.8\% \]

70% Volumetric Increase
Effective Clay Mineral Volume (Results)

- 56 Samples
- 4% effective clay volume determined
- >2 fold increase from dry clay
Water Saturation

- Dual Water Model accounts for excess clay conductivity
- Effective clay mineral volume is a good input parameter

\[S_w = \frac{S_{wt} - S_{wb}}{1 - S_{wb}} \]

\[S_w = \text{effective water saturation} \]
\[S_{wt} = \text{total water saturation} \]
\[S_{wb} = \text{clay bound water saturation} \]

\[= V_{shale} \times \frac{\bar{x} \phi_m(\text{total})}{\phi_{\text{total}}} \]

\[= V_e \times \frac{\bar{x} \phi_m(\text{total})}{\phi_{\text{total}}} \]

Accounts for clay minerals, avoids assumption that shale = clay minerals

Developed by Clavier, 1984
Dual Water Method (Results)

- Total Residual Oil Zone (ROZ) predictions:
 - Archie’s = 37 feet
 - Dual Water = 100 feet

- Dual Water shows:
 - 63ft more potential ROZ
 - Higher oil saturation throughout

- V_{shale} accurate?
Effective Porosity

- Clay microporosity is does not contribute to fluid flow
- Exclude from total porosity for effective porosity (eq.)

At given depth:

$$\phi_e = \phi_t - \phi_m$$

- Calculations on 42 samples → 18% $\bar{x}\phi_t$ → 16% $\bar{x}\phi_e$ in thick Cypress
- ~11% decrease, applicable regionally?
Effective Porosity (RESULTS)

Clay Content vs Porosity

- Total Porosity
- Effective Porosity
- Ineffective Porosity (Clay Microporosity)
Conclusions

• 4 clay mineral groups and 8 morphologies in the thick Cypress
 • Microporosity specific to morphology. Range of 26 – 72%

• In thick Cypress, accounting for clay microporosity has lead to:
 • > 2 fold increase in clay mineral volume estimates
 • Greater show of a potential ROZ (based on water saturation)
 • Improved estimates of effective porosity

• Future work will require validation of V_{shale} accuracy and the 11% effective porosity decrease
Thank you
Acknowledgements

• The research herein was supported by U.S. Department of Energy contract number DE-FE0024431

• Imaging Technology Group, Beckman Institute, University of Illinois Urbana-Champaign (assistance and access to the ESEM-FEG)

• Wagner Petrographic

• Staff at the Illinois State Geological Survey (ISGS)